way we interact with ourselves and the
planet.

Resources
1

www.esa.org/esa/wp-content/uploads/2013/03/
ESA-Statement-on-Economic-Activity.pdf

Shrinking the Earth by D. Worster, Oxford University
Press, 2016. US$27.95/£18.99 (265 pp.) ISBN 978-0-19-
984495-1

Department of Biology, University of New Mexico,
Albuquerque, NM 87131, USA

*Correspondence: jnekola@unm.edu (J.C. Nekola).

http://dx.doi.org/10.1016/j.tree.2016.07.008

References

1. Burger, J.R. et al. (2012) The macroecology of sustainability.
PLoS Biol. 10, e1001345

2. Brown, J.H. et al. (2011) Energetic limits to economic
growth. Bioscience 61, 19-26

Incorporating
Imperfect Detection
into Joint Models of
Communities: A
response to VWarton
et al.

Steven R. Beissinger,
Kelly J. Iknayan,’
Gurutzeta Guillera-Arroita,?
Elise F. Zipkin,®

Robert M. Dorazio,”

J. Andrew Royle,® and
Marc Kéry®

Warton et al. [1] advance community ecol-
ogy by describing a statistical framework
that can jointly model abundances (or dis-
tributions) across many taxa to quantify
how community properties respond to
environmental variables. This framework
specifies the effects of both measured
and unmeasured (latent) variables on the
abundance (or occurrence) of each spe-
cies. Latent variables are random effects
that capture the effects of both missing

environmental predictors and correlations
in parameter values among different spe-
cies. As presented in Warton et al., how-
ever, the joint modeling framework fails to
account for the common problem of
detection or measurement errors that
always accompany field sampling of
abundance or occupancy, and are well
known to obscure species- and commu-
nity-level inferences.

Detectability often differs among individu-
als within a species and among species
within a community, and typically varies
among observers, sampling sites, and
survey methods [2]. These differences in
detectability create biases in estimates of
abundance, occupancy, and dynamics
derived from raw counts of multispecies
surveys, which are the basis for the joint
modeling framework and the examples
given in [1]. Undetected individuals result
in underestimation of population size
when species are common and in false
absences when species are rare. As a
result, inferences concerning the explana-
tory power of ecological covariates [3] or
community pattemns across gradients [4]
can be seriously affected, with important
effects being masked or spurious ones

Cell

detected when variation in detectability
is not taken into account. The problem
is ubiquitous across taxa, including both
plants and animals [2]. Thus, imperfect
detection is the rule rather than the excep-
tion. Fortunately, a class of models has
been developed that  specifically
addresses this problem in the form of
hierarchical, detection-based multispe-
cies models, which treat species occur-
rence or abundance as an imperfectly
observed (latent) state. For reviews with
examples and the code to run these mod-
els, see lknayan et al. [2], Royle and Dor-
azio (chapter 12in [5]), and Kéry and Royle
(chapter 11 in [6]).

The simple but powerful idea to model a
community as a collection of single-species
models linked by a mixture distribution was
developed more than a decade ago by
Dorazio and Royle [7] and Gelfand et al.
[8]. These models typically include (i) an
observation process that models detec-
tion, (i) an ecological process related to
abundance (or occupancy) and any cova-
riates of interest, and (iii) a super-population
process that models species as random
effects fromm community-level distributions,
using hyperparameters to model detection

Box 1. What is a Detection-based Joint Model for Abundance?

We extend the joint hierarchical model of species abundance in Box 1 of Warton et al. [1] by adding a layer to
accommodate imperfect detection using measurements derived from repeated surveys over a period when

the population is closed.

Let yj be the number of individuals of species j detected for replicate k at site /. The only modification required
is to treat true abundance Nj as a latent state that is only partially observable and related to the observed

counts (yju):

Yii ~ binomial (Nj;pjx)

# Abundance measured with detection error

Each individual of V;; has a probability of being recorded or detected (o) in the count yj [12]. The remainder is
identical to models in Box 1 of [1], except we relabel their y; as N; to clarify that abundance is imperfectly
observed and to distinguish true (V) from measured (y;) abundance. For the latent variable model from [1] we

have:

Nj | zi ~ Flmy,¢)

gmy) = o+ oy + X' + 22,
2 ~ N, I

# Model for latent abundance
# Random effects, covariates and latent variables
# Model for latent variables

To make the model identifiable, we need repeated abundance measurements (i.e., k>1) for at least some sites,
and put some constraints on pj; (typically site-level covariates or random effects). Analogous models can be
specified for occurrence instead of abundance [5-7].
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and abundance (or occupancy) [2]. The
hierarchical structure of these models
allows the entire dataset collected during
the sampling process to inform estimation
of species-specific abundance or occu-
pancy. This facilitates simultaneous model-
ing of data on all species, including rare
ones, and even allows for inference on
species not observed during sampling
using data augmentation to estimate total
species richness [7]. Multispecies models
for occupancy have been broadly applied
[2,6], while similar models for abundance
are fewer but growing in number [9-11].
Both types are straightforward to imple-
ment in a Bayesian framework. Box 1 illus-
trates how to adapt the approach in
Warton et al. [1] to create a detection-
based joint model for abundance.

If a joint model approach using latent var-
iables is the future of community ecology,
as suggested by Warton et al. [1], then it
will be critical to incorporate measurement
error driven by detection processes
directly into the modeling framework.
Whether the objective is to examine biotic
interactions, conduct ordinations, or pre-
dict species richness, models based on
raw counts are likely to underperform at
best and have the potential to result in
seriously misleading conclusions at worst.
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The joint modelling of many variables in
community ecology is a new and techni-
cally challenging area with many opportu-
nities for future developments. The
possibility of extending joint models to
deal with imperfect detection has been
highlighted by Beissinger et al. as an
important problem worthy of further inves-
tigation [1]. We agree, and previously
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pointed to this potential extension as an
outstanding question [2], alongside mod-
els that can estimate phylogenetic repul-
sion or attraction, nonlinearity in the
response to latent variables, and spatial
or temporal correlation, because further
developments in all these directions are
needed. An important advantage of the
new model-based approach to multivari-
ate analysis that we described [2] is that
there is now the capacity to incorporate
such important features into analyses. We
make two key points here in response to
Beissinger et al. First, we want to temper
the enthusiasm expressed by those
authors [1] concerning how often imper-
fect detection methods are in fact needed.
Second, we clarify the extent to which
imperfect detection methods are currently
available for our motivating context, where
there are many response variables [2].

Itis undoubtedly true that there are plenty
of situations where there is a need to
account for imperfect detection, across
many study species [3]. However, to sug-
gest that this is the rule rather than the
exception in ecology is an overstatement,
in much the same way as it would be
overreaching to suggest that all joint mod-
els need to account for phylogenetic cor-
relation, nonlinearity, spatial correlation,
or any other possible extension. The pre-
cise statistical model specified depends
on both the question being asked and the
properties of the data being modelled
(which is in part informed by study design
and sampling methods). The only plausi-
ble scenario in which all ecologists should
be advised to use the same modelling
approach is if all ecologists were asking
the same question and collecting data in
the same way, which would make for a
rather uninteresting disciplinel A con-
structive way forward would be to care-
fully identify the sorts of situations in which
imperfect detection is needed (a function
of the questions asked as well as the data
collected), and what checks are needed
(in study design and analysis) to verify
whether such methods are needed. For
example, one situation where models
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