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Abstract. Emerging infectious pathogens are responsible for some of the most severe host mass
mortality events in wild populations. Yet, effective pathogen control strategies are notoriously difficult
to identify, in part because quantifying and forecasting pathogen spread and disease dynamics is chal-
lenging. Following an outbreak, hosts must cope with the presence of the pathogen, leading to host–
pathogen coexistence or extirpation. Despite decades of research, little is known about host–pathogen
coexistence post-outbreak when low host abundances and cryptic species make these interactions diffi-
cult to study. Using a novel disease-structured N-mixture model, we evaluate empirical support for
three host–pathogen coexistence hypotheses (source–sink, eco-evolutionary rescue, and spatial varia-
tion in pathogen transmission) in a Neotropical amphibian community decimated by Batra-
chochytrium dendrobatidis (Bd) in 2004. During 2010–2014, we surveyed amphibians in Parque
Nacional G. D. Omar Torr�ıjos Herrera, Cocl�e Province, El Cop�e, Panama. We found that the primary
driver of host–pathogen coexistence was eco-evolutionary rescue, as evidenced by similar amphibian
survival and recruitment rates between infected and uninfected hosts. Average apparent monthly sur-
vival rates of uninfected and infected hosts were both close to 96%, and the expected number of unin-
fected and infected hosts recruited (via immigration/reproduction) was less than one host per disease
state per 20-m site. The secondary driver of host–pathogen coexistence was spatial variation in patho-
gen transmission as we found that transmission was highest in areas of low abundance but there was
no support for the source–sink hypothesis. Our results indicate that changes in the host community
(i.e., through genetic or species composition) can reduce the impacts of emerging infectious disease
post-outbreak. Our disease-structured N-mixture model represents a valuable advancement for conser-
vation managers trying to understand underlying host–pathogen interactions and provides new oppor-
tunities to study disease dynamics in remnant host populations decimated by virulent pathogens.
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INTRODUCTION

Emerging infectious diseases threaten human health,
jeopardize food security, and imperil global biodiversity
(Daszak et al. 2000, Jones et al. 2008, Holdo et al. 2009,
Fisher et al. 2012, 2016, Lozano et al. 2013). To develop
effective prevention and control options, wildlife managers
need estimates of disease prevalence, mean infection inten-
sity, transmission, and recovery rate parameters, which can
be difficult to obtain from wild populations. Fungal patho-
gens, in particular, have led to the collapse of bat communi-
ties across North America (Blehert et al. 2009) and global
amphibian mass mortality (Berger et al. 1998, Olson et al.
2013, Lips 2016). In each case, fungal pathogen emergence
caused mass host mortality, where some species were extir-
pated while others persisted at low abundances (e.g., Craw-
ford et al. 2010, Fisher et al. 2012, Langwig et al. 2012).
Following an outbreak, persisting hosts must cope with the

sustained presence of the fungal pathogen as it continues
infecting hosts or as it occurs in environmental reservoirs
(e.g., Johnson and Speare 2003, Hoyt et al. 2015). This
leads to observed patterns of host–pathogen coexistence or
extirpation post-outbreak (e.g., Anderson and May 1978,
Thrall and Antonovics 1995, Briggs et al. 2010, Maslo
et al. 2015, Knapp et al. 2016). While many studies have
posited mechanisms for host–pathogen coexistence
(Table 1), testing these hypotheses with field-derived empir-
ical evidence is limited for populations that have experi-
enced mass mortality events (e.g., Fisher et al. 2012, 2016,
but see Frick et al. 2017) because low host abundance and
cryptic species post-outbreak makes tracking individuals,
estimating their demographic rates, and analyzing host–
pathogen interactions difficult (e.g., Faustino et al. 2004,
Pryde et al. 2005, Harmsen et al. 2011, Lachish et al.
2011).
Three hypotheses explain host–pathogen coexistence post-

outbreak that may act alone or in tandem (Table 1; Fig. 1).
First, source–sink dynamics characterize a system where host
re-colonization via immigration or reproduction prevents
extirpation as new individuals replace those lost from dis-
ease-induced mortality (e.g., Brown and Kodric-Brown
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TABLE 1. Epidemiological literature review of the three hypotheses and mechanisms explaining host–pathogen coexistence.

Hypotheses, mechanisms, and pathogen system Studies

Source–sink dynamics
Demographic rescue (i.e., dispersal, animal migration, wildlife
corridors, captive breeding and release programs, and translocation
of individuals among populations)
Applicable to multiple systems Hess (1996), Altizer et al. (2011)
Chronic wasting disease Coner and Miller (2004)
Mycoplasma gallisepticum Hosseini et al. (2004)
Batrachochytrium dendrobatidis Muths et al. (2011)

Irregular and spatially uncorrelated epidemics
Measles, whooping cough Rohani et al. (1999)

Vacuum effect (i.e., territorial boundaries are no longer defended,
allowing an influx of new diseases and non-diseased animals to the area)
Applicable to multiple systems Killian et al. (2007)

Genetic rescue (i.e., selective advantage of hybrids produced by
native and immigrant hosts)
Applicable to multiple systems Carlson et al. (2014)

Eco-evolutionary rescue
Harvesting and density-dependent reproduction
Applicable to multiple systems Choisy and Rohani (2006)

Temporal variation in host density
Applicable to multiple systems Lloyd-Smith et al. (2005)
Mycobacterium bovis Caley and Hone (2005)

Removing other stressors
Applicable to multiple systems Lafferty and Holt (2003)
White syndrome in corals Bruno et al. (2007)

Pathogen genetic diversity and life history
Myxoma virus Best and Kerr (2000)

Host genetic diversity and life history
Applicable to multiple systems Altizer et al. (2003), Acevedo-Whitehouse

and Cunningham (2006)
Batrachochytrium dendrobatidis Savage and Zamudio (2011)

Ecological immunology
Applicable to multiple systems Hawley and Altizer (2011)

Selective culling or predation (top-down regulation)
Applicable to multiple systems Packer et al. (2003), Ostfeld and Holt (2004)
Chronic wasting disease Wild et al. (2011)

Mesopredator release (top-down and bottom-up regulation)
Toxoplasma gondii Hollings et al. (2013)

Demographic compensation (i.e., decrease in natural mortality)
Applicable to multiple systems Tompkins and Begon (1999)
Tuberculosis Jolles et al. (2006)
Avian malaria Kilpatrick (2006)

Host microbiome
Applicable to multiple systems Belden and Harris (2007)
Batrachochytrium dendrobatidis Jani and Briggs (2015)

Host age-structure
Batrachochytrium dendrobatidis Briggs et al. (2010), Vredenburg et al. (2010)

Species community composition changes through time
Applicable to multiple systems Streicker et al. (2013)

Seasonality (includes seasonal impacts on host social behavior,
physiology, contact rates, pulses of host births and deaths, and
changes in host immune defenses)
Applicable to multiple systems Altizer et al. (2006), Tompkins et al. (2011)

Spatial variation in pathogen transmission
Spatial distribution of infected hosts
Applicable to multiple systems Hagenaars et al. (2004)

Sociality, aggregations, group size
Small-mammal parasites Perkins et al. (2009)
Pseudogymnoascus destructans Langwig et al. (2012)
Sarcoptes scabiei Almberg et al. (2015)
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1977, Pulliam 1988, Hanski 1998, Whittaker and Fernandez-
Palacios 2007, Carlson et al. 2014). In this case, the number
of individuals entering the population increases population
viability, resulting in little net change in host abundance over
time. When source–sink dynamics lead to host–pathogen
coexistence, the survival and recruitment rates of uninfected
hosts are higher than that of infected hosts, leading to high
host turnover but constant abundance. Second, eco-evolu-
tionary rescue occurs when either evolutionary (i.e., local
adaptation or natural selection of resistant/tolerant individu-
als) or ecological (i.e., reduced host density, changes in
community composition, demographic compensation) mech-
anisms increase the fitness (i.e., survival and recruitment) of
infected hosts post-outbreak, matching the fitness of unin-
fected hosts (i.e., Gomulkiewicz and Holt 1995, Kilpatrick
2006, Bell and Gonzalez 2009, Vander Wal et al. 2013, Carl-
son et al. 2014, Pillai et al. 2016). This may occur if hosts
evolve resistance to the pathogen (defined as mechanisms
that reduce the growth rate of the pathogen on the host and
thereby mortality) or tolerance (defined as traits that enable
the host to reduce disease without reducing the growth rate
of the pathogen; Langwig et al. 2017). Alternatively, ecologi-
cal changes, such as shifts in host density (Anderson and
May 1978) or community composition (Streicker et al.
2013), may occur independently of changes in genetic varia-
tion or the capacity to rapidly evolve effective pathogen
resistance, leading to a rescue effect at their population or
community levels. Finally, abiotic or biotic features that cor-
relate with infection risk (e.g., host density/pathogen preva-
lence, species richness, and/or microhabitat) may mediate
host–pathogen coexistence by creating spatial variation in
pathogen transmission. These areas may facilitate or inhibit

pathogen survival and growth, becoming areas of high or
low pathogen transmission, respectively (Paull et al. 2012).
In turn, these areas are then sources of infected hosts that
can disperse to less infected areas (Paull et al. 2012) or are
environmental refugia that decrease host susceptibility or
mortality to pathogen infection (i.e., Puschendorf et al.
2011, Becker et al. 2012). Note that the mechanisms operat-
ing source–sink dynamics involve processes occurring outside
the metapopulation (e.g., immigration), whereas the mecha-
nisms determining eco-evolutionary rescue operate tempo-
rally, and the mechanisms influencing spatial variation in
pathogen transmission occur solely within the metapopula-
tion. Collectively, these three hypotheses explain host–patho-
gen coexistence, but their relative importance and
interactions are rarely estimated for host communities deci-
mated by emerging infectious diseases.
Given limited ability to manipulate post-outbreak sys-

tems, estimating host demographic rates (e.g., survival,
recruitment, infection, recovery) is one approach that shows
promise to determine the mechanisms responsible for host–
pathogen coexistence. Demographic rates are typically
estimated using data on individually marked animals and
associated capture–recapture models, which correct demo-
graphic rate estimates for bias induced by imperfect host
detection (Kendall 2009, McClintock et al. 2010). However,
capture–recapture models perform poorly when recapture
rates are low, typical of populations with low abundances
and cryptic species, generating high parameter uncertainty
(e.g., Faustino et al. 2004, Pryde et al. 2005, Harmsen et al.
2011, Lachish et al. 2011). Recently developed N-mixture
models provide a mechanistic framework that estimate host
demographic rates without the need to track individuals by

TABLE 1. (Continued)

Hypotheses, mechanisms, and pathogen system Studies

Abiotic or biotic reservoirs (including microclimate variation)
Cowpox virus Begon et al. (1999)
Avian influenza viruses Roche et al. (2009)
Applicable to multiple systems Viana et al. (2014)
Batrachochytrium dendrobatidis Savage et al. (2011), Becker et al. (2012)

Land-use change (e.g., fragmentation, urbanization, etc.)
Microbotryum violaceum Carlsson-Graner and Thrall (2002)
Nematodes Gillespie and Chapman (2006)
Applicable to multiple systems Bradley and Altizer (2007), Brearley et al. (2013)

Climate warming and disease risk
Applicable to multiple systems Harvell et al. (2004)

Superspreader individuals, species, environments
Applicable to multiple systems Paull et al. (2012)

Biodiversity–disease relationship
Applicable to multiple systems Keesing et al. (2006), Roche et al. (2012)

Resource provisioning
Applicable to multiple systems Becker and Hall (2014)

Behavioral susceptibility (i.e., the interaction between host
movement and group size)
Applicable to multiple systems Cross et al. (2005)

Notes: Reviews and theoretical papers are indicated using the phrase “applicable to multiple systems” under the pathogen system column.
Depending on spatial-temporal scale, some mechanisms are not mutually exclusive among hypotheses. Therefore, comparing across the
hypotheses, mechanisms of source–sink dynamics involve processes occurring outside the metapopulation (e.g., immigration), mechanisms
of eco-evolutionary rescue operate through time, and mechanisms of spatial variation in pathogen transmission occur solely within the
metapopulation.
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taking advantage of the extra information gained from
repeatedly surveying sites within a period of population clo-
sure (Dail and Madsen 2011, Zipkin et al. 2014a,b, Ross-
man et al. 2016).
Here, we evaluate support for the three host–pathogen

coexistence hypotheses in promoting amphibian–Batra-
chochytrium dendrobatidis (hereafter Bd; Longcore et al.
1999) coexistence in El Cop�e, Panama. The amphibian com-
munity in El Cop�e was decimated by Bd in late 2004 (Lips
et al. 2006). Typically, when Bd arrives in a na€ıve amphibian
community, pathogen prevalence and host infection increase
rapidly (Lips et al. 2006, Briggs et al. 2010, Crawford et al.
2010, Vredenburg et al. 2010), which often correlate with
high host mortality and mass amphibian die-offs (e.g., Sav-
age and Zamudio 2011, Heard et al. 2014, but see Reeder
et al. 2012). Within months, the remaining amphibian com-
munity differs substantially from the original community in
measures of host density, species richness, and community
composition (e.g., Smith et al. 2009a, Crawford et al. 2010,
Angeli et al. 2015, DiRenzo et al. 2016). The amphibian
community in El Cop�e can be considered a metapopulation,
because there is high gene flow among the streams studied

and less dispersal to and from far away sites (Robertson
et al. 2008). In this study, we extend the stage-structured
N-mixture model (Zipkin et al. 2014a,b) to accommodate
disease dynamics and estimate demographic rates, giving rise
to new opportunities for conservation managers to under-
stand disease dynamics of decimated populations and deter-
mine effective strategies to protect remnant populations.

MATERIALS AND METHODS

Study site and surveys

From 2010 to 2014, we surveyed amphibians along four
200-m stream and three 400-m trail transects in Parque Nacio-
nal G. D. Omar Torr�ıjos Herrera, Cocl�e Province, El Cop�e,
Panama, that were established in 1998 as part of a long-term
amphibian monitoring initiative (8°400 N, 80°37017″ W; Lips
et al. 2003, 2006; for map, see Angeli et al. 2015). Prior to Bd
arrival, this site had 74 amphibian species (Crawford et al.
2010). Within four years of Bd arrival, 30 species were extir-
pated, and nine species declined by 85% to 99% (Crawford
et al. 2010). The park spans elevations between 500 and

FIG. 1. To evaluate empirical evidence for host–pathogen coexistence: (A) First, we diagnose stable host–pathogen disease dynamics,
where host abundance, pathogen prevalence, and infection intensity are maintained over time. (B) Then, we construct a model to estimate
demographic parameters that would support or oppose each host–pathogen coexistence hypothesis: survival, recruitment, abundance,
prevalence, and transmission risk. From time t � 1 to t, each disease class (i.e., infected or uninfected) has individuals that survive (Φ), die
(1 � Φ), transition between states (recover, r, or become infected, c), and arrive (c; via immigration or reproduction). Demographic rates are
estimated with count data using the disease-structured N-mixture model. (C) Finally, we determine which hypothesis (e.g., source–sink
dynamics, eco-evolutionary rescue, or spatial variation in pathogen transmission) best explains host–pathogen coexistence by comparing
infected and uninfected host demographic parameters.
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1,000 m and is located on the continental divide. The study
site has distinct dry (December to April) and wet (May to
November) seasons, where the wet season experiences higher
maximum daily temperatures and total monthly rainfall than
the dry season (Appendix S1: Figs. S1–S3).
We divided each transect into 20-m adjacent sections (here-

after referred to as “sites”) for a total of 40 stream and 59 trail
sites. Within each primary sampling season (i.e., wet 2010, wet
2011, wet 2012, dry 2013, wet 2013, dry 2014), we surveyed
each site one to eight times between 19:00 and 01:00 over 1–
35 d (Appendix S1: Table S1). These surveys within primary
seasons are referred to as secondary sampling periods. We
assumed closed populations (i.e., no births, deaths, immigra-
tion, emigration, or disease state transitions) within primary
sampling seasons (i.e., among secondary sampling periods;
Appendix S1: Fig. S4) and open populations between primary
sampling seasons. We did not detect any evidence of spatial
autocorrelation in the amphibian count data across the sites
(except for the last season 2014 dry; Appendix S1: Table S2),
as many of the frog species used in the analysis tend to stay in
the same location (Savage 2002, K€ohler 2011).
Surveys were conducted by teams of two to six people

slowly walking through each site, locating, and capturing
amphibians within 2 m of the stream bank or trail. To esti-
mate Bd infection status, we swabbed the skin of amphibians
using a sterile cotton-tipped swab (Dry Swab MW113, Medi-
cal Wire & Equipment, Corsham, Wiltshire, UK) and stored
the swab in a 2-mL capped tube with 30 lL of 70% ethanol
(Hyatt et al. 2007). We used a fresh pair of latex powder-free
gloves when handling each individual. We released all
amphibians at the original point of capture.

Molecular analysis

We extracted the DNA on skin swabs using PrepMan
Ultra (Thermo Fisher Scientific, Warrington, Cheshire,
UK) to estimate Bd infection status. We tested swabs for Bd
in singlicate using Taqman qPCR running 50 cycles (Boyle
et al. 2004, Hyatt et al. 2007). We ran each plate using stan-
dards of the El Cop�e, Panama Bd isolate JEL 423 obtained
during the 2004 outbreak ranging from 0.1 to 1,000 Bd zoos-
pore genomic equivalents (ZGE) to determine Bd presence
and infection intensity. To ensure that false-positives were
negligible, we included negative controls on each qPCR
plate. We categorized individuals as Bd positive if qPCR
amplification occurred before cycle 50 (Briggs et al. 2010).
Hereafter, we refer to Bd ZGE as host infection intensity.

Disease-structured N-mixture model

We planned on analyzing the amphibian-Bd data using a
capture–mark–recapture framework to estimate host demo-
graphic rates and determine the relative support for each of
the host–pathogen coexistence hypotheses (e.g., source–sink,
rescue, spatial variation; Fig. 1), but low amphibian abun-
dance and recapture rates generated nearly unidentifiable
demographic estimates (Appendix S2: Table S1). Instead, we
extended the generalized N-mixture model (Dail and Mad-
sen 2011) to incorporate disease dynamics following the
stage-structured modeling framework in Zipkin et al.
(2014a,b) and focused our analysis on counts of unmarked

infected and uninfected hosts to estimate demographic rates,
while accounting for imperfect host and pathogen detection,
pooling the data across species.
Pooling species data do not allow for species-level esti-

mates of Bd infection, although it is well known that
amphibian species vary in their susceptibility to Bd (e.g.,
Lips et al. 2003, Crawford et al. 2010, Searle et al. 2011a,b,
Gervasi et al. 2013). Ultimately, this limits our ability to
make inference on how and why particular species persist
with pathogens. However, amphibians that persist following
Bd outbreaks are typically more similar ecologically (e.g.,
Smith et al. 2009a) and genetically (e.g., Savage and Zamu-
dio 2011, Savage et al. 2015) than the amphibian commu-
nity pre-outbreak. This decrease in species heterogeneity
may lead to lower variations in demographic rates among
species (i.e., narrow credible intervals). Given that some spe-
cies are more abundant than others, all demographic esti-
mates reported are a weighted average across individuals of
different species (i.e., more abundant species affect the
demographic estimates more than rare species). Although
there were insufficient data to run a species-specific analysis
(Appendix S2: Table S1), we confirmed our results by run-
ning the model outlined below with the four most abundant
species, representing both terrestrial and riparian habitats
(i.e., Espadarana prosoblepon, Pristimantis cerasinus, Pristi-
mantis cruentus, and Sachatamia albomaculata; Appendices
S2 and S3). We present the pooled model results in the main
text because all amphibian species in El Cop�e, Panama are
hosts to Bd, and their presence may affect disease dynamics.
Parameters of the disease-structured N-mixture model are

estimated by tabulating between-year variance as an increas-
ing function of the survival probability, the expected number
of individuals gained (via immigration and birth), disease
transitions, and the number of years between samples, where
greater turnover (via immigration, birth, and disease state
transition) results in higher between-year variance (Dail and
Madsen 2011, Zipkin et al. 2014a,b). The information to esti-
mate disease transition probabilities comes from the between
time-series Markovian dependence assumed by the model.
Under reasonable models that impose Markovian dynamics
between and within time-series of counts, the dependence
structure provides the information about the dynamical state-
specific parameters, which can be demonstrated analytically
for simple cases (Dail and Madsen 2011). The modeling
framework has also been validated via simulations with more
complicated structures (e.g., Priol et al. 2014, Zipkin et al.
2014a,b, Bellier et al. 2016, Zhao et al. 2017).
Our interest lies in modeling Ni,j,t, the true amphibian

abundance in disease state i at each site j during primary sea-
son t (hereafter referred to as “season”). We modeled the
abundance of uninfected (i = 1) and infected (i = 2)
amphibians at site j during the first season (t = 1) using a
Poisson distribution

Ni;j;1 �PoissonðkiÞ

such that mean host abundance, ki, differs by disease state i.
We assume a Poisson distribution because the number of
observed amphibians per 20 m site during the first season
(wet 2010) was low (ranging from zero to nine) and had a
mean/variance ratio of 0.68 (Appendix S1: Fig. S6), suggesting
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only minor overdispersion in the data. Note that amphibians
with infection intensities ranging between 1 and 106 ZGE are
considered infected. Although parameter estimates likely vary
between streams and trails, low host abundance and few sites
made habitat-specific covariates effects unidentifiable.
We modeled subsequent seasons (t ≥ 2) by considering

the number of hosts that: survived in each disease state (S),
transitioned between disease states (T), and were recruited
via immigration and reproduction (G). To model the num-
ber of hosts that survived from season t � 1 to t, we defined
parameter Φi as the state-specific monthly apparent survival
probability for uninfected (i = 1) and infected (i = 2)
amphibians, such that

Si;j;t �Bin Ni;j;t�1;U
Mj;t

i

� �

where Mj,t is the total number of months between season t �
1 to t. We estimated the monthly apparent survival probabil-
ity because the number of months between the end of season
t � 1 to the start of season t varied between three and twelve
and differed among sites. Similarly, we specified the number
of hosts that transitioned from disease state i to ii at site j
from season t � 1 to t, Ti(ii),j,t, based on site-specific monthly
transmission risk (cj,t) and recovery probability (rj,t)

T1ð2Þ;j;t �Bin S1;j;t; c
Mj;t

j;t

� �

T2ð1Þ;j;t �Bin S2;j;t; r
Mj;t

j;t

� �
:

With this specification, amphibians that transition between
disease states first experience the survival probability associ-
ated with their disease state in season t � 1 and then transi-
tion between disease states. Because we did not know a
priori which transmission form to use (i.e., density or fre-
quency dependent), we modeled transmission risk, cj,t, as a
function of a compound term, covj,t, and an indicator term,
q, which identifies the transmission form (e.g., Smith et al.

2009b), where covj;t ¼ N2;j;t

Nq
j;tþ0:001

. If q equals zero or one, then

it suggests density- or frequency-dependent transmission,
respectively. If q falls in between zero and one, then a mix-
ture of density- and frequency- dependent processes is
occurring (Smith et al. 2009b). We standardized and mod-
eled the compound term (covj,t) using a logit link function,
logit(cj,t) = a0 + a1 9 covj,t. In either case of density- and
frequency- dependent Bd transmission risk, we expected a
positive value for a1.
Finally, we modeled the number of amphibians gained to

each disease state i at site j from season t � 1 to t, Gi,j,t

Gi;j;t �Poissonðci;j;tÞ

where ci,j,t is the expected number of uninfected (i = 1) and
infected (i = 2) hosts recruited (either by immigration or by
reproduction) to site j between seasons. To accommodate
differences in the number of months between seasons, we
included the standardized number of months between sea-
sons as a covariate, such that log(ci,j,t) = b0i + b1 9 Mj,t.
The state-specific host abundance for disease state i at site

j during season t is then

Ni;j;t ¼ Gi;j;t þ Si;j;t þ TiiðiÞ;j;t � TiðiiÞ;j;t

the sum of the number of individuals that were gained at a
site, survived at a site and remained there, and those that
transitioned into disease state i minus those that transi-
tioned out of disease state i.
We specified the observation model to account for imper-

fect host and pathogen detection during the sampling pro-
cess. We adjusted for imperfect pathogen detection because
infected hosts tend to be misidentified as uninfected when
their infection intensities are low (e.g., Lachish et al. 2012,
Miller et al. 2012) and low infection intensities are common
post-outbreak (e.g., Briggs et al. 2010). Therefore, we mod-
eled the number of misidentified infected hosts, mj,k,t, at site
j during secondary survey k and season t as a binomial ran-
dom variable

mj;k;t �Binðg1;j;k;t; 1� uj;k;tÞ

where g1,j,k,t is the field-observed number of uninfected
hosts, and φj,k,t is the average probability of detecting the
pathogen on an individual given that it is infected at site j
during survey k and season t. To calculate φj,k,t, we modeled
the relationship between Bd detection probability and aver-
age site-specific Bd infection intensity, ZGE, which is
reported on the log scale, following Miller et al. (2012), logit
(φj,k,t) = d0 + d1 9 ZGEj,k,t.
The corrected number of detected uninfected and infected

hosts, yi,j,k,t, in disease state i at site j during survey k and
season t is then calculated by adjusting the number of field-
observed hosts, gi,j,k,t, by the number of misidentified hosts,
mj,k,t

y1;j;k;t ¼ g1;j;k;t �mj;k;t

y2;j;k;t ¼ g2;j;k;t þmj;k;t:

We use yi,j,k,t to account for imperfect host detection and
model true host abundance, Ni,j,t

yi;j;k;t �BinðNi;j;t; pi;j;k;tÞ

where pi,j,k,t is the state-specific host detection probability at
site j during survey k and season t. To account for seasonal
and survey-specific effects on host detection probability, we
included an indicator covariate for wet or dry season sam-
pling, differing by disease state i, and the number of obser-
vers during each survey, which we assumed had the same
effect on disease states. We included average Bd infection
intensity as a covariate in the infected host detection model
given that infection may change the probability of host cap-
ture (e.g., Poulin and Maure 2015)

logitðp1;j;k;tÞ ¼ h01 þ h11 � wett þ h2 � obsj;k;t

logitðp2;j;k;tÞ ¼ h02 þ h12 � wett þ h2 � obsj;k;t þ h3 � ZGEj;k;t:

Model fit

We fit our model using Markov chain Monte Carlo
(MCMC) methods to estimate the posterior distributions
for all parameters implemented in JAGS 4.0.0 in the R
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environment (R Core Team 2015) and package jagsUI
(Kellner 2016, Appendix S4). For parameters in logit link
functions, except for the parameters associated with
imperfect pathogen detection (d0 and d1), we used priors
centered on zero with standard deviation of 2.71 following
the recommendation by Lunn et al. (2012). For the indica-
tor term q, we used a standard variable selection prior q ~
Bernoulli (0.5) (Ntzoufras 2002). For all other parameters
(i.e., b0i, b1, log(ki)), we used flat priors centered on zero
with a standard deviation of 31.62 (i.e., precision of
0.001).
For d0 and d1, i.e., Bd detection rates in qPCR samples,

we used informative priors provided by Miller et al. (2012),
d0 ~ dunif(0.25, 1.32) and d1 ~ dunif(0.14, 0.51), because we
did not collect the data to estimate these parameters (i.e.,
double swabbing or running multiple qPCRon a single sam-
ple) and it is reasonable to assume that qPCR detection is
similar across studies. These parameters affect the detection
probability of the pathogen on a host and correct for
misidentifying individuals with low infection intensities as
uninfected. We ran three separate runs of the model with
different combinations of priors for the other parameters.
We used normal priors centered on zero and varied the stan-
dard deviation using either 10 or 1,000. We found no differ-
ence in parameter estimation (Appendix S4: Fig. S1) and
report results with a standard deviation of 1,000. We calcu-
lated a Bayesian P value to ensure that our model fit the
data well (Appendix S4: Figs. S2 and S3; Kery and Schaub
2012). To determine the support for each of the host–patho-
gen coexistence hypotheses (e.g., source–sink, rescue, spatial
variation), we compared the posterior distributions of
parameters of interest (Fig. 1; Appendix S5). The complete
model specification, including an assessment of model fit
using a Bayesian P value approach, and data simulations
with model analysis are presented in Data S1 and S2, respec-
tively.

RESULTS

Field summary

Over the six primary seasons, we captured and identified
the disease state of 1,621 amphibians capture events repre-
senting 32 species (Appendix S2: Table S1) with 0–9 amphib-
ians captured during any single secondary sampling period
at a 20-m site. The number of observed individual amphib-
ians ranged widely from 17 to 469 (Appendix S1: Fig. S7)
over the six seasons, and we found very few tadpoles or juve-
niles of any species (Appendix S1: Fig. S8).

Amphibian–Bd dynamics

Amphibian abundance and Bd disease dynamics stabilized
from 2010 to 2014 in El Cop�e, Panama, indicating an ende-
mic disease state (model output: Fig. 2A; raw data:
Appendix S1: Fig. S7). Total amphibian abundance
increased from 134 individuals (95% CI: 90–175) in 2010
and remained at approximately 331 amphibians from 2012
to 2014 (Fig. 2; Appendix S5: Table S1). Bd prevalence and
infection intensity were also steady over the same time per-
iod (Fig. 2). Infected host abundance was slightly greater

than uninfected host abundance (Fig. 2A), with average Bd
prevalence remaining just over 50% (Fig. 2B; range = 56%
[95% CI, 49–64] in 2011 to 59% [95% CI, 42–75] in 2010).
This is much higher than na€ıve Bd prevalence, which aver-
aged around 22% across species (Appendix S1: Fig. S7).
Most infected hosts (~97%) had estimated infection intensi-
ties <100 ZGE (Fig. 2C).

Amphibian–Bd coexistence

We found no negative consequence of Bd infection on
host survival or recruitment as predicted by the eco-evolu-
tionary rescue hypothesis (and contrary to the source–sink
dynamics hypothesis; Figs. 1C and 3). Average apparent
monthly survival probabilities of uninfected and infected
hosts were both close to 96% (Fig. 3A; Table 2, S4; 95% CI,
Φuninfected = 94.36–98.91%, Φinfected = 94.86–98.01%), and
the expected number of uninfected and infected hosts
recruited (via immigration or reproduction) was less than
one host per disease state per 20-m site every 8.5 months
(Fig. 3B; Table 2, S4; 95% CI, cuninfected = 0.30–0.61,
cinfected = 0.28–0.59). Average monthly recovery probability
was also low at 19% (Table 2; 95% CI, 0.01–40.05). The high
level of precision in our estimates of survival and recruit-
ment (as demonstrated by relatively narrow credible inter-
vals; Fig. 3) suggests that there is little unexplained
variation across species, supporting the idea that the species
in the post-outbreak amphibian community in El Cop�e,
Panama may be experiencing similar population-level
dynamics (Appendix S2).
Unexpectedly, we found support for negative density-

dependent Bd transmission risk, where the indicator term,
q, was close to zero (Fig. 4A; Table 2; q = 0.00; 95% CI,
0.00–0.00) and the slope term, a1, was negative (Fig. 4A;
Table 2; a1 = �3.05; 95% CI, �5.1 to �1.29. This suggests
that Bd transmission risk is density dependent, with the
highest transmission probabilities at sites with low abun-
dance. To understand the underlying driver of this unantic-
ipated result, we conducted several post hoc correlation
tests (function cor.test() in R; Spearman’s correlation coef-
ficient [q]) and additional model runs. First, to confirm
the negative density-dependent Bd transmission risk
detected by the model, we examined the relationship
between observed host abundance during season t vs. the
per capita change in the number of infected hosts between
seasons t � 1 to t. We found the same negative correlation
detected by the model in the observed data (Fig. 4B;
Table 2; Spearman’s correlation coefficient q = �0.40).
Second, to determine whether changes in host abundance
led to changes in pathogen exposure, we examined the cor-
relation between observed host abundance and mean Bd
infection intensity (i.e., Keesing et al. 2006). We found a
negative correlation, suggesting that as host abundance
increases, Bd exposure and infection intensity decreases
(Fig. 4C; Table 2, Spearman’s correlation coefficient
q = �0.35).
We fit two additional models to determine the strength of

negative density-dependent Bd transmission risk: a null and
a random effects transmission model. We found that the null
transmission model fit the data equally as well as the origi-
nal model outlined above (Appendix S4: Figs. S4 and S5),
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indicating Bd transmission rates can be explained equally
well as a fixed probability, suggesting the density-depen-
dence detected is weak. In addition, the random effects
transmission model suggested little variability in Bd trans-
mission risk among sites (Appendix S4: Fig. S6; r2

mean = 0.13; 95% CI, r2 = 0.00–0.87), again suggesting
that Bd transmission is fixed across the study area. Collec-
tively, these two additional models show that the strength of
density-dependent and the support for spatial variation in
pathogen transmission is weak.

Amphibian–Bd detection

Both amphibians and Bd were detected imperfectly,
although Bd detection probability was informed by esti-
mates from Miller et al. 2012 (Table 2). The probability of
correctly identifying an infected host as infected (φ)
increased with average Bd infection intensity; likewise, the
probability of detecting an infected host also increased with
average Bd infection intensity (Table 2). Lastly, we found a
positive effect of the number of observers on amphibian
detectability (Table 2).

DISCUSSION

The large negative consequences of Bd infection on
amphibian survival and recruitment during the 2004 El
Cop�e Bd outbreak (Lips et al. 2006, Crawford et al. 2010)
are no longer evident in the amphibian community six years
later, supporting the eco-evolutionary rescue hypothesis. We
found weak support for the spatial variation in pathogen
transmission hypothesis in the form of negative density-
dependent Bd transmission, suggesting that areas with few
individuals experience high Bd transmission risk, while areas
of high amphibian abundance experience low levels of dis-
ease. Herein, we describe several evolutionary (i.e., host
adaptation, attenuation in Bd virulence) and ecological (i.e.,
changes in community composition, decline in host density)
mechanisms that may explain eco-evolutionary rescue in El
Cop�e, Panama.
Evolutionary rescue, in the form of either changes in

amphibian host susceptibility or Bd virulence, can explain
amphibian–Bd coexistence in El Cop�e, Panama. This mech-
anism is supported by the growing evidence on the potential
for amphibians to adapt to chytridiomycosis (e.g., McMa-
hon et al. 2014, Ellison et al. 2015, Savage and Zamudio
2016) and observations that Bd virulence changes over time
(e.g., Brem et al. 2013, Langhammer et al. 2013, Voyles
et al. 2014). In some amphibian populations, Bd has driven
rapid amphibian immunogenetic adaption (e.g., May et al.
2011, McMahon et al. 2014, Bataille et al. 2015, Savage and
Zamudio 2016) and changes to amphibian innate and
acquired immune responses (e.g., Savage and Zamudio
2011, Ellison et al. 2015) that decrease disease-induced host
mortality. Bd infection no longer causes significant host
mortality in several amphibian populations with endemic
chytridiomycosis (e.g., Rana muscosa [Briggs et al. 2010],
Litoria rheocola [Sapford et al. 2015], Taudactylus eungellen-
sis [Retallick et al. 2004]; but see Murray et al. 2009, Longo
and Burrowes 2010, Pilliod et al. 2010). There is growing
evidence that Bd virulence attenuates over time, resulting in
lower amphibian disease-induced mortality rates (e.g., Velo-
Ant�on et al. 2012, Phillips and Puschendorf 2013), but in El
Cop�e, Panama, Bd attenuation does not seem to be occur-
ring based on comparisons of Bd virulence from historical
and contemporary isolates (Voyles et al. 2018). A more
likely evolutionary scenario would be that amphibians have
evolved immunity to the chytrid fungus, contributing to
host–pathogen coexistence.
Ecological rescue may also contribute to amphibian–Bd

coexistence in El Cop�e, where a change in community com-
position mitigates disease-induced host mortality. Prior to
Bd arrival in 2004, the El Cop�e amphibian community con-
sisted of 74 species, including Atelopus varius (Crawford
et al. 2010). This species harbors and sheds thousands to
millions of infectious Bd zoospores that can infect a large
number of hosts (i.e., an acute supershedder; DiRenzo et al.
2014). After Bd’s arrival, approximately 42 species were
extirpated, and Atelopus varius was last seen in El Cop�e
around 2009 (K. R. Lips, unpublished data). If Atelopus var-
ius (and/or other species) was a primary transmitter of Bd, it
is possible that following the extirpation of this species, Bd
transmission rates decreased and persisting amphibians can
cope with lower Bd transmission rates.

TABLE 2. Summary of parameter estimates for disease-structured
N-mixture model and Spearman’s correlation tests.

Process, description,
and parameter Mean (95% CI)

Correlation
coefficient q P

Ecological
Survival
Φ1 0.96 (0.93, 0.98)
Φ2 0.96 (0.94, 0.97)

Recruitment
b01 0.43 (0.30, 061)
b02 0.41 (0.29, 060)
b1 1.80 (1.44, 2.27)

Recovery
r 0.16 (0.02, 0.46)

Transmission
q 0.01 (0.00, 0.00)
a0 0.52 (0.13, 0.86)
a1 0.04 (0.01, 0.21)

Observational
Pathogen detection
d0 0.73 (0.69, 0.76)
d1 0.62 (0.61, 0.63)

Host detection
h01 0.06 (0.04, 0.08)
h02 0.03 (0.02, 0.04)
h11 0.32 (0.24, 0.39)
h12 0.27 (0.21, 0.35)
h2 0.56 (0.54, 0.58)
h3 0.57 (0.56, 0.58)

Variables tested for correlation
Change in per capita number of infected

Host abundance �0.40 <0.001
Mean Bd infection

Host abundance �0.35 <0.001

Notes: See Methods for complete parameter definitions. All
model parameter values consist of mean and 95% credible interval.
Parameter estimates are on the probability scale, except recruitment,
which is numeric, quantifying the number of recruits per month.
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In addition to declines in species richness, declines in
amphibian abundance also decrease disease-induced host
mortality if Bd transmission were density-dependent during
the Bd outbreak (e.g., Rachowicz and Briggs 2007, Briggs
et al. 2010). Under positive density dependence, lower
amphibian density translates to lower contact rates and Bd
transmission rates. The change from positive density-depen-
dent transmission during the outbreak to negative density

dependence post-outbreak could be the result of changes in
Bd virulence, amphibian immunity, species richness, and
host abundance. Present-day amphibian captures and spe-
cies richness is at least 66% and 40% lower than pre-Bd esti-
mates, respectively (K. R. Lips, unpublished data; Crawford
et al. 2010). Using our field data, we cannot distinguish
between the roles of community composition or host density
because both metrics decreased following Bd arrival in El
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Cop�e, but controlled experiments that manipulate commu-
nity composition and density could disentangle these two
processes (e.g., Becker et al. 2014).
In addition to eco-evolutionary rescue, we found that spa-

tial variation in pathogen transmission may lead to host–
pathogen coexistence. Specifically, we found that there was a
weak signal of negative host-density-dependent Bd transmis-
sion. Negative host-density-dependent Bd transmission risk
cannot be explained without assuming that Bd exists in envi-
ronment reservoirs for long periods of time, given that Bd
transmission risk is nearly 100% at sites where host abun-
dance is one individual. Previous studies have demonstrated
that Bd occurs in the environment; given that amphibians
can become infected in areas that do not contain infected
amphibians (i.e., Courtois et al. 2016, Fern�andez-Beaskoet-
xea et al. 2016, Voyles et al. 2018). However, without know-
ing if Bd can reproduce or how long it persists in the
environment, we cannot support the implied assumptions of
a Bd environmental reservoir. Without directly testing speci-
fic mechanisms for negative host-density-dependent Bd
transmission, it is difficult to attribute this pattern to a sin-
gle process (e.g., encounter reduction, susceptible host regu-
lation, biotic or abiotic reservoirs; Keesing et al. 2006,
Becker et al. 2014).
Given that survival and recruitment (via immigration or

reproduction) rates were similar between infected and unin-
fected hosts, we found no support for the source–sink
hypothesis explaining amphibian–Bd coexistence in El Cop�e,
Panama. Several other studies show evidence for the source–
sink hypothesis in different regions, where high amphibian
recruitment compensates for low infected host survival
(Anaxyrus boreas [Muths et al. 2011], Litoria verreauxii
alpine [Scheele et al. 2015a,b], Litoria rheocola [Phillott
et al. 2013]). In El Cop�e, male Espadarana prosoblepon move
<3 m on average over two years, but this species is capable of
long distance movement and genetic data showed that
upland and lowland populations exchange individuals
(Robertson et al. 2008). Unfortunately, little is known about
migration and reproduction rates of most other Neotropical
amphibian species found in El Cop�e, Panama. This detailed
information could help to support or refute the feasibility of
source–sink dynamics maintaining host abundance over
time as a mechanism for host–pathogen coexistence.
Our model supports the assumption that persisting spe-

cies have similar disease dynamics after the Bd outbreak,
given that most parameter estimates had narrow credible
intervals. Our original intent was to model species-specific
disease dynamics and identify pathogen amplifiers (e.g.,
DiRenzo et al. 2014) or diluters (e.g., Searle et al. 2011a,b).
However, we did not have the data for species-specific mod-
els given the limited number of detections per species
(Appendix S2: Table S1). Single species models of the four
most abundant species (Espadarana prosoblepon, Pristiman-
tis cerasinus, Pristimantis cruentus, and Sachatamia albomac-
ulata) performed similar to the community model albeit
some credible intervals of parameter estimates were more
imprecise because of small sample sizes (Appendix S2).
Therefore, given the similarities in results between the spe-
cies-specific and the pooled data models, we are confident in
the results presented in the paper (Appendix S2). It is diffi-
cult to estimate species-specific disease dynamics in this

diverse community, but future research may be able to dif-
ferentiate species-specific contributions to host–pathogen
coexistence as host abundance increases and data accumu-
lates over time.
Emerging infectious diseases are challenging to forecast,

which may be one impediment to development of optimal
pathogen control strategies (Daszak et al. 2000, Jones et al.
2008, Fisher et al. 2012, but see Russell et al. 2017). One of
the primary goals for the management of emerging infec-
tious diseases is to minimize pathogen spread and their
impacts on host populations (Smith et al. 2005, Bielby
et al. 2008, Langwig et al. 2015). In amphibian communi-
ties where Bd is endemic, additional stressors including cli-
mate and land use change may compound pressures on
amphibians struggling to persist (e.g., Scheele et al. 2016).
These stressors have the potential to alter host population
trajectories, putting species at higher risks of extinction.
Amphibian declines are difficult to reverse, especially when
the causes of decline are challenging to determine (e.g., dis-
ease, introduced species, climate change, and pollution).
Thus far, the prospects for amphibian conservation and
recovery in the face of record numbers of extirpations are
grim (Wake and Vredenburg 2008). Yet, the results from
our study indicate that the amphibian community in El
Cop�e, Panama is stabilizing despite the ongoing presence
of disease, providing a rare example of eco-evolutionary
rescue occurring at an ecological time scale. It remains to
be seen if eco-evolutionary rescue offers amphibians
long-term persistence or only a short-term relief from a tra-
jectory towards extinction. The advanced statistical frame-
work and approach outlined here offers a guide for disease
ecologists seeking to exploit unmarked organismal datasets
and to address previously intractable questions at large
spatial scales. Our approach should be useful for long-term
datasets in small remnant populations devastated by
emerging infectious diseases.
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