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a b s t r a c t

Determining appropriate statistical distributions for modeling

animal count data is important for accurate estimation of abun-

dance, distribution, and trends. In the case of sea ducks along the

U.S. Atlantic coast, managers want to estimate local and regional

abundance to detect and track population declines, to define

areas of high and low use, and to predict the impact of future

habitat change on populations. In this paper, we used a modified

marked point process to model survey data that recorded flock

sizes of Common eiders, Long-tailed ducks, and Black, Surf, and

White-winged scoters. The data come from an experimental aerial

survey, conducted by the United States Fish & Wildlife Service

(USFWS) Division of Migratory Bird Management, during which

east-west transects were flown along the Atlantic Coast from

Maine to Florida during the winters of 2009–2011. To model the

number of flocks per transect (the points), we compared the fit

of four statistical distributions (zero-inflated Poisson, zero-inflated

geometric, zero-inflated negative binomial and negative binomial)

to data on the number of species-specific sea duck flocks that were

recorded for each transect flown. To model the flock sizes (the

marks), we compared the fit of flock size data for each species

to seven statistical distributions: positive Poisson, positive negative

binomial, positive geometric, logarithmic, discretized lognormal,

zeta and Yule–Simon. Akaike’s Information Criterion and Vuong’s
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closeness tests indicated that the negative binomial and discretized

lognormal were the best distributions for all species for the

points and marks, respectively. These findings have important

implications for estimating sea duck abundances as the discretized

lognormal is a more skewed distribution than the Poisson and

negative binomial, which are frequently used to model avian

counts; the lognormal is also less heavy-tailed than the power

law distributions (e.g., zeta and Yule–Simon), which are becoming

increasingly popular for group sizemodeling. Choosing appropriate

statistical distributions for modeling flock size data is fundamental

to accurately estimating population summaries, determining

required survey effort, and assessing and propagating uncertainty

through decision-making processes.

Published by Elsevier B.V.

1. Introduction

Effective management of wildlife populations requires high quality estimates of population
abundance and distribution with associated measures of uncertainty. Managers use abundance
estimates to determine population status, for comparison to environmental carrying capacities, and to
monitor population trends [44]. Understanding patterns of abundance and aggregation is necessary at
both regional and local scales to evaluate the impacts of conservation actions and human disturbance.
Obtaining accurate population indices is difficult, however, because animals are often unevenly
and unpredictably distributed [8,9,43]; for example, counts often include many zeros [19,30] and
distributions of count data can be extremely right skewed [4,17]. The problem is compounded by a
need for consistent repeated estimates over time; yet, sufficient data to characterize highly aggregated
species distributions are expensive to collect and maintain. The choice of appropriate statistical
models for wildlife count distributions is fundamental for consistency and efficiency of abundance
and distribution estimation and to facilitate more reliable uncertainty assessments [48].

Waterfowl managers are especially interested in population estimates for five species of North
American sea ducks (Tribe Mergini) that winter in large numbers off the Atlantic coast of the
United States (Sea Duck Joint Venture 2003). Data from a variety of sources suggest that Common
eiders (Somateria mollissima), Long-tailed ducks (Clangula hyemalis), and Black, Surf, and White-
winged scoters (Melanitta nigra,M. perspicillata, andM. fusca) may be declining [36,42], and proposed
offshore energy development has the potential to significantly alter theirwintering habitat [13,15,25].
Waterfowlmanagers need accurate and precise coast-widewinter abundance indices to assess trends
and set annual harvest regulations, while energy regulators need predictions of spatial variation
in abundance to inform responsible site placement of offshore structures and to guide future
development activities.

During the winter, sea ducks form large foraging flocks, but can also be found alone or in small
groups [7]. Their distributions can shift within and between years, due to changes in habitat, weather,
and prey availability [18,24,26,52], and they can be found up to 40 miles from land [41]. As a result,
effective monitoring surveys are expensive, dangerous, and fraught with logistical challenges. If the
resulting data are to beworth collecting, then appropriate statisticalmodels to interpret the data need
to be available and accessible.

The United States Fish and Wildlife Service (USFWS) Division of Migratory Bird Management
initiated an experimental aerial survey, conducted fromMaine to Florida in thewinters of 2009–11, to
assess the feasibility and effectiveness of a long-term winter sea duck monitoring program along the
Atlantic coast. Determining whether precise estimates of regional annual abundance are possible for
the five target species is necessary to evaluate the effectiveness of the survey. Tomeet these objectives,
we explore the fit of a set of statistical models to data from the Atlantic coast wintering sea duck
survey. Our goals are: (1) to identify a model, or models, that accurately describes the distribution
of counts, characterized by an unusually heavy right tail and an excessive number of zeros; (2) to
determine if the best model choice varies by species; and (3) to compare parameter estimates among
species and assess whether more refined models (e.g., that stratify regions by high and low density
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or include habitat covariates) and/or data collection efforts are necessary. Identifying a parsimonious
model is of primary importance becausemonitoring programs require repeated, timely estimates that
are easy to explain and robust to unexpected data reduction or other survey changes. Thus, analytically
complex and data-hungry approaches are ill-advised formanagement-orientedmonitoring programs.

The most challenging problem we face is characterizing a count distribution with an extreme
variance to mean ratio, as is often observed in sea duck data [52]. Identifying appropriate statistical
distributions for analyzing count data of animal populations is an ongoing area of investigation
in ecology. For reasons based on first principles and for convenience, the Poisson distribution has
frequently been used [8] and is popular in modeling avian species (e.g., [14,28]). Yet the assumption
that the variance equals the mean often does not hold for many seabird species, which are known
to form large flocks. The negative binomial distribution, which allows the variance to exceed the
mean, is used as an alternative to the Poisson to characterize the count distributions for species
where spatial aggregation is known to occur (e.g., [2,11,49]). The negative binomial distribution
is the result of a Poisson–Gamma mixture and converges to the Poisson distribution as the shape
parameter, k, approaches infinity (Appendix A). Okubo [34] recommended the geometric distribution
– a discrete analog to the exponential distribution and also a special case of the negative binomial
where the shape parameter equals one – to handle extremely large group sizes and demonstrated
its applicability for a number of taxa including birds. Empirical evidence suggests, however, that the
negative binomial and geometric models do not adequately capture observed distributions of counts
for some populations, especially those that are found in very large group sizes, such as some fish and
bird species. Ma et al. [29] derived a logarithmic distribution from first principles based on rules for
when individuals should join and leave groups; thismodel has outperformed the Poisson and negative
binomial distributions in studies of house sparrows [17] and seabirds [21]. Ma et al. [29] additionally
pointed out that the logarithmic can be derived as a limiting case of the negative binomial distribution
as the shape parameter (k, Appendix A) approaches zero (see also [39]), placing it in the context of
other distributions used to model ecological count data.

More recently, the power law distribution has been proposed for modeling group sizes when the
variance tomean ratio ismuch larger than can be accommodated by the aforementionedmodels [3,4].
Several studies have demonstrated that the power law distribution fits well to a number of empirical
examples including populations of fish, seabirds, and mammals [10,2,22,23,45]. However, the power
law distribution (using ecologically relevant parameter ranges) is capable of producing extremely
large counts (e.g., in the millions; [10]), which are not realistic for most sea duck species. The power
law can be truncated or combined with an exponentially decaying function [33] to address this
problem. In fact, Ma et al. [29] pointed out that the logarithmic distribution itself is a discrete form
of a power law distribution with an exponential cutoff, where the power law exponent is −1 and
the upper tail decays exponentially above a cutoff that is directly related to the average group size
experienced by an individual. Bonabeau et al. [4] also presents mechanistic models of group size that
lead to power law distributions with exponential decay.

Other heavy-tailed distributions exist and should be considered in amodel selection context before
concluding that ‘‘power law-like’’ behavior observed in empirical data necessarily indicates a power
law distribution [10]. These include the Yule–Simon and the discretized lognormal distributions,
which themselves can be viewed, respectively, as limiting distributions of stochastic preferential
attachment or multiplicative growth processes [10,31]. Given the diversity of possibilities, a model
selection framework would be useful to guide choices of appropriate distributions to model highly
skewed ecological count data [2].

In this paper, we test the fit of a series of over-dispersed statistical distributions, from the negative
binomial to the power law, to counts of sea duck flock sizes; we also assess the fit of a series of over-
dispersed models to the distribution of flock frequencies. Our assessment is a critical first step in the
applied statistical work needed for the development of rigorous survey designs, power analysis, risk
and impact assessments, and optimal management strategies for sea ducks. Appropriate modeling
of the basic underlying distributional characteristics of avian count data is critical for making strong
inferences about the distribution of target populations, particularly in themarine environment where
logistics are inherently more difficult than in terrestrial systems and reliance upon statistical models
is correspondingly greater.
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2. Methods

2.1. Data collection

The USFWS aerial survey was conducted along the Atlantic coast from the US-Canadian border

(44° 46′N) to Jacksonville, FL (30°21
′
N) between January and March, 2009–2011. Four fixed-wing

aircraft were flown along east–west transects spaced systematically at intervals of five minutes of
latitude (approximately 5 nm apart). These transects extended east from the coastline to the longer of
two distances: 8 nm or the distance to 16 m depth. Transects ranged in length from 1 to 80 nm (with
95%of transects between4.8 and46.4 nm). Themean transect lengthwas 17.9 nm (standarddeviation:
12.8 nm) with transects less than 8 nm in areas that span bays and longer transects paralleling the
shoreline in complicated coastal areas (e.g., Long Island Sound).

The survey crews, which consisted of an observer and pilot-observer, flew at 110 knots and 70 m
altitude, while counting sea ducks and other aquatic birds within 400 m-width strip transects (the
observer counts a 200 m strip on one side of the plane while the pilot does the same on the opposite
side). After completing their entire set of transect lines, each crew flew north to their first east–west
transect line and replicated every other transect from north to south. The replicate surveys were
conducted approximately one week after the first surveys and do not duplicate the original track
exactly, making the possibility of recounting the same individuals remote. The three scoter species
are difficult to distinguish reliably in the field, leading to a large number of scoters identified only to
genus (Melanitta spp.). As such, we focused our analyses on generic scoter species (records for all three
species combined with unidentified scoters), along with the Common eider and Long-tailed duck. We
refer to these two species and one genus as the ‘‘species groups’’ of interest.

Surveys were conducted from 1 to 18 February in 2009, 23 January to 2 March in 2010, and
31 January to 17 February in 2011. Due to the vagaries of field operations, transects and replicates
varied somewhat between years. We use data from the 236 transects, and 76 replicates that were
successfully surveyed in all three years. Common eider and Long-tailed ducks do not winter in the
southern portions of the survey area, and so models fit for them are based on fewer transects (88 for
Common eiders, of which 21were replicated; 173 for Long-tailed ducks, of which 54were replicated).

The data consist of observations along survey transects recording the (1) location, (2) species, and
(3) number of birds seen at the location. We refer to the group of birds recorded at one location
(including single birds) as a ‘‘flock’’, and the number of birds seen as the ‘‘flock size’’. Note that birds are
counted onlywithin the transect boundaries, while the actual flockmight have extendedwell beyond.

2.2. Analysis

To estimate the abundance of sea ducks by species, we represent the data as a modified marked
point process [12,20] where the flocks are the points and the size of the flocks, discrete and
independent of the points, are themarks. The point process is summarized by transect: we first model
the flock counts (i.e., number of flocks) on each transect, and then model the flock sizes, conditional
on the number of flocks observed. Preliminary analyses indicated large variations and only small
correlations in the number of species-specific flocks (points) among neighboring transects (0.23 for
Common eiders, 0.41 for Long-tailed ducks, and 0.24 for scoters), due in part to zero-zero neighbors
in areas of low density. This suggests that the number of flocks on one transect is not predictive of
the flock count on neighboring transects. We additionally found no significant relationships between
the number/density of flocks per transect and the sizes of those flocks, which fits our assumption of
independence in marks and points.

To determine the appropriate model to describe the observed number of flocks per transect (the
point process), we tested the fit of four distributions to the transect-level flock counts: zero-inflated
Poisson, zero-inflated geometric, and zero-inflated negative binomial, aswell as the standard negative
binomial (Appendix A). The data were fit separately for Common eiders, Long-tailed ducks, and scoter
species and we included an offset for transect area (to account for variable transect lengths), which
was standardized by dividing the area of each transect by the mean of all transect areas. We fit each
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model using maximum likelihood estimation (MLE) in the program R (version 2.13.2; R development
Core [40]) with the VGAM package [50].

For the flock size data (themarks), we fit seven discrete distributions with positive integer support
(because there are no flocks of size zero): positive Poisson, positive negative binomial, positive
geometric, logarithmic, discretized lognormal (a discretized version of the continuous lognormal,
truncated to a minimum of one), zeta (discrete power law), and Yule–Simon (which we refer to
as the Yule) distributions (Appendix B). We modeled the data for species groups separately using
each statistical distribution [40]. We again estimated the parameters for distributions using MLE in
the program R (version 2.13.2; [40]). We used the VGAM package [50] to estimate parameters for
the positive Poisson, positive negative binomial, positive geometric, and logarithmic distributions.
We used the methods and code provided in Clauset et al. [10] to estimate the parameters for the
discretized lognormal, the zeta, and the Yule distributions. In applying the zeta distribution, both a
shape parameter as well as a threshold (sometimes referred to as xmin) can be estimated, belowwhich
data are excluded from the analysis. This is sometimes done because it is hypothesized that power law
distributions may occur only above some minimum value for a given data set [10]. Because we were
interested in fitting each of these distributions to the complete dataset, we set the threshold equal to
one for the zeta distribution (and other distributions, where applicable).

For both the points and marks, we calculated the log-likelihood of each model. We used the
likelihoods to calculate Akaike’s Information Criterion corrected for finite sample sizes (AICc), which
we then used to rank themodels [6].We further assessedmodel fit using the Vuong closeness test [47]
for pair-wise comparisons of the best fitting models to the flock size data (marks). The Vuong is a
likelihood-ratio test that measures whether one model is closer than the other to the unknown true
model using the Kullback–Leibler information criterion [47] and can be derived for both nested and
non-nestedmodels. The benefit of using the Vuong test is that it allowed us to evaluate the hypothesis
that models ranked higher based on AICc were significantly closer to the true data-generating model
than lower-ranked models through estimation of a p-value. We implemented the Vuong test by
generalizing the ‘‘vuong’’ function for non-nested models (because all top models turned out to be
non-nested) in the pscl package in program R [51]. We then compared parameter estimates for the
top models for each species group.

3. Results

There were 1742, 2709, and 4047 flocks observed from 2009 to 2011 for Common eiders, Long-
tailed ducks, and scoters, respectively, with the total number of individuals being 28,968 Common
eiders, 30,677 Long-tailed ducks, and 55,859 scoters. The number of flocks per transect ranged from
0 to 95 for Common eiders, 0–130 for Long-tailed ducks, and 0–104 for scoters. Even after accounting
for species ranges, there were a large number of transects in which no flocks were observed: 166 out
of 327 for Common eiders, 413 out of 681 for Long-tailed ducks, 525 out of 936 for scoters.

Flock size ranged from 1 to 2000 for Common eiders, 1–750 for Long-tailed ducks, and 1–5000
for scoters with the median flock size equal to three for Common eiders and Long-tailed ducks and
four for scoters. However, the standard deviation of flock size was quite high: 94 for Common eiders,
39 for Long-tailed ducks, and 112 for scoters. These statistics and plots of log-frequency versus log-
abundance (Fig. 1) demonstrate the right skew of the flock size distributions.

3.1. Distribution of number of flocks per transect

The negative binomial distributions (zero-inflated and standard)were the best fitting distributions
for the data on the number of flocks per transect for all species groups (Table 1; this was also
true for the three scoter species identified to species—results not shown). For the Common eider,
the zero-inflated negative binomial distribution had a slightly higher log-likelihood (and hence
lower AICc value) than the standard negative binomial. In the case of the Long-tailed ducks and
scoters, the zero inflation parameter was estimated to be zero, collapsing to the standard negative
binomial distribution. The zero-inflated geometric and Poisson distributions had considerably lower
log-likelihoods and comparably poorer fits to the data (Table 1).
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Fig. 1. Model fits (lines) and observed probabilities (black dots) for count data (marks) for the three species groups: Common

eiders, Long-tailed ducks, and scoters. Fits are shown for the top 5 models: logarithmic, discretized lognormal, zeta, Yule, and

positive negative binomial. The positive negative binomial fit is not visible because it is obscured by the logarithmic fit.

Table 1
Log-likelihood and parameter estimates for distributions fit to data on the number of flocks per transect for Common

eiders, Long-tailed ducks, and all scoters combined. Likelihoods are presented because likelihood rankings were identical to

AICc rankings (sample sizes were relatively large and the number of parameters for all fitted models ranged from 2 to 3).

Specifications for each distribution are given in Appendix A. The parameter ϕ is the zero inflation parameter (ranging from 0

to 1) and is the probability of a structural zero. The second to last column shows the observed (sample) mean number of flocks

per transect for each species (bold) and estimates of the mean under each distributional assumption. Note that the MLE of the

negative binomial distribution is the sample mean by definition. The last column shows the observed proportion of transects

without flocks (bold) and the proportion estimated under each distributional assumption. The zero inflated negative binomial

is excluded from this table for the Long-tailed ducks and scoter species because the zero-inflated parameter was estimated to

be zero, collapsing the distribution to a standard negative binomial.

Log-likelihood ϕ Parameter estimates Mean flocks

per transect

Transectswith

no flocks

Common eiders 5.33 0.51
Zero inflated negative binomial −727.72 0.19 μ = 7.20 k = 0.43 5.81 0.43

Negative binomial −743.24 μ = 5.33 k = 0.24 5.33 0.48

Zero inflated geometric −885.62 0.07 p = 0.55 1.12 0.57

Zero inflated Poisson −1444.37 0.56 λ = 9.57 4.18 0.49

Long-tailed ducks 3.98 0.61
Negative binomial −1162.43 μ = 3.98 k = 0.21 3.98 0.54

Zero inflated geometric −1644.99 0.05 p = 0.66 1.86 0.68

Zero inflated Poisson −2270.05 0.45 λ = 6.82 3.73 0.45

Scoters 4.32 0.56
Negative binomial −1782.63 μ = 4.32 k = 0.20 4.32 0.53

Zero inflated geometric −2286.72 0.07 p = 0.59 1.33 0.61

Zero inflated Poisson −4280.94 0.49 λ = 7.80 4.00 0.49

3.2. Distribution of flock sizes

The discretized lognormal distribution produced the best fit to the data for flock sizes of all three
species groups (Table 2; Fig. 1). This was a consistent result applying to all species together (Fig. 2),
each species separately (including the three scoter species when identified to species; results not
shown) and each species separately by year (2009–2011; results not shown). In all cases, the dis-
cretized lognormal had the lowest AICc value when compared to the other six candidate distributions
and had a significantly better fit compared to the other top models as inferred from Vuong pair-wise
closeness tests (Table 2). The next best models varied by species group with the logarithmic, Yule,
zeta, and positive negative binomial distributions all producing reasonable (although inferior) fits to
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Table 2
Model selection results for each model fit to non-zero flock size data for Common eiders, Long-tailed ducks, all scoter species

combined. Log-likelihood values are shown in the diagonals. Likelihoods are presented because likelihood rankings were

identical to AICc rankings (sample sizes were relatively large and the number of parameters ranged from 1 to 2 for all

fitted models). The off-diagonals report the p-values from pair-wise Vuong closeness tests. In all pair-wise comparisons, the

distribution with the lower log-likelihood value was also identified as the best (closest to unknown true model) by the Vuong

test statistic. However, the values in grey show when the difference was not significant. The positive Poisson and geometric

models are excluded from our comparison because their likelihoods indicated very poor fits to our data (Common eiders:

−6585.6 geom,−61,046.0 pois; Long-tailed ducks:−9160.3 geom,−48,029.6 pois; scoters:−14,519.5 geom,−111,268.9 pois).

Common eiders

Discretized

lognormal

Yule Zeta Logarithmic Positive negative

binomial

Discretized lognormal −5227.0

Yule <0.001 −5347.9

Zeta <0.001 <0.001 −5404.8

Logarithmic <0.001 0.049 0.333 −5425.5

Positive negative binomial <0.001 0.041 0.304 <0.001 −5429.3

Long-tailed ducks

Discretized

lognormal

Yule Logarithmic Positive negative

binomial

Zeta

Discretized lognormal −7718.0

Yule <0.001 −7922.1

Logarithmic <0.001 0.394 −7931.6

Positive negative binomial <0.001 0.352 <0.001 −7935.9

Zeta <0.001 <0.001 0.007 0.007 −8022.5

Scoters

Discretized

lognormal

Logarithmic Positive negative

binomial

Yule Zeta

Discretized lognormal −12312.9

Logarithmic <0.001 −12764.7

Positive negative binomial <0.001 <0.001 −12774.4

Yule <0.001 0.126 0.149 −12901.7

Zeta <0.001 0.005 0.008 <0.001 −13069.6

the data (Table 2; Fig. 1). For all three species, the positive negative binomial had a very similar, al-
though slightly inferior fit as compared to the logarithmic distribution using AICc and Voung tests
(e.g., the positive negative binomial model is obscured by the logarithmic in Fig. 1). This is consistent
with the fact that the logarithmic distribution is a limiting case of the negative binomial [39,29] and
that the shape parameter in the negative binomial for all species was close to zero (Table 3). This was
also true for the Yule and zeta distributions, whose fits were qualitatively very similar, although the
Yule outperformed the zeta for all species by AICc and Vuong tests (Table 2). The geometric and pos-
itive Poisson models were the worst fitting models in all cases with likelihoods much lower than the
other models (see caption for Table 2) and were thus excluded from further consideration.

In all comparisons, the direction of the Vuong test statistic supported the ranking of model fits by
their AICc values (and by their log-likelihoods). The discretized lognormal had a significantly better
fit as compared to the other six distributions for all three species groups (Vuong tests, p < 0.001;
Table 2). In all other pair-wise comparisons, the distribution with the highest likelihood value was
judged closer to the true model than the inferior model, although in some situations the difference
between models was not significant.

Fig. 2 shows log-probability versus log-abundance plots for each distribution for simulated data
using parameter values as estimated by maximum likelihood fitting to combined flock size data
from all species (Fig. 2 column 1) as compared to the actual data of all species groups combined
(Fig. 2 column 2). The figure demonstrates that the positive Poisson, positive geometric, logarithmic,
and positive negative binomial distributions are unable to account for the large flocks sizes that are
observed in the data while the zeta and Yule are capable of producing flock sizes that are much larger
than observed in the data. Fig. 2 highlights the superior fit of the discretized lognormal distribution –
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Table 3
Parameter estimates for the top five models to the flock size data for: all species combined, Common eiders, Long-tailed ducks,

and scoters (listed in order by AICc). The values shown are the parameters for each distribution as described in Appendix B.

The six right-most columns of the table give summary statistics of the observed flock size data for each species (bold) as well

as summary statistics of simulations of flock size under each fitted distribution. The summaries for each distribution are the

mean values based on 10,000 simulations using each species’ parameter estimates and size of the sample data. The last column

is the standard deviation of the maximum count over the 10,000 simulations. Note that the MLE parameters for the negative

binomial and logarithmic distributions are such that the estimated mean of the distribution is the sample mean by definition.

Parameter estimates 1st

quartile

Median Mean 3rd

quartile

Max SD (max)

All species 2 3 13.59 9 5000
Discretized lognormal μ = 1.093 σ = 1.478 2.00 4.00 10.03 9.11 993.72 634.77

Logarithmic p = 0.982 1.89 4.45 13.59 14.50 343.81 58.40

Positive negative binomial μ = 0.438 k = 0.008 1.96 4.63 13.54 14.57 338.26 59.22

Yule a = 0.610 1.00 2.00 4.6E+06 7.88 3.9E+10 3.3E+12

Zeta a = 0.518 2.00 4.00 2.0E+07 14.56 1.7E+11 9.6E+12

Common eiders 2 3 16.63 9 2000
Discretized lognormal μ = 0.866 σ = 1.680 1.14 3.40 11.83 9.45 959.22 843.11

Yule a = 0.609 1.00 2.03 3.6E+04 7.84 6.2E+07 1.7E+09

Zeta a = 0.521 2.00 3.96 1.4E+08 14.37 2.4E+11 2.2E+13

Logarithmic p = 0.986 1.97 5.05 16.63 17.34 347.07 75.37

Positive negative binomial μ = 0.419 k = 0.006 1.99 5.13 16.89 17.69 350.89 76.29

Long-tailed ducks 2 3 11.32 7 750
Discretized lognormal μ = 0.886 σ = 1.526 1.03 3.01 9.13 8.16 649.26 459.21

Yule a = 0.652 1.00 2.00 1.5E+04 6.84 4.1E+07 1.5E+09

Logarithmic p = 0.977 1.16 4.00 11.33 12.33 231.47 47.87

Positive negative binomial μ = 0.314 k = 0.008 1.23 4.00 11.29 12.35 227.77 46.70

Zeta a = 0.548 2.00 3.64 8.2E+05 12.56 2.2E+09 1.0E+11

Scoters 2 4 13.80 10 5000
Discretized lognormal μ = 1.286 σ = 1.369 2.00 4.00 9.97 9.94 589.93 359.30

Logarithmic p = 0.982 1.85 4.57 13.80 14.71 315.93 60.20

Positive negative binomial μ = 0.919 k = 0.017 1.98 4.90 14.04 15.15 313.52 61.90

Yule a = 0.586 2.00 2.06 1.2E+05 8.48 4.9E+08 1.3E+10

Zeta a = 0.498 2.00 4.00 9.0E+07 16.20 3.6E+11 2.4E+13

which best captures the range of variation observed in the right tail – to the sea duck data as compared
to the other six distributions.

The parameter estimates for the top models were comparable among species groups with esti-
mates generally being more similar between Common eiders and Long-tailed ducks as compared to
scoters (Table 3). In the parameterization of the zeta and Yule distributions that we present (Ap-
pendix B), the mean is not finite for values of a < 1 [10,50], yet for all three species groups the
maximum likelihood estimates for these parameters were less than one. Thus, in order to compare
the output from the fit of each statistical distribution, we simulated count data for each species group
that was the size of the sample data (nall = 8498; ncommon eider = 1742; nlong-tailed ducks = 2709;
nscoters = 4047) 10,000 times and report the mean values for the summary statistics (Table 3). These
results demonstrate the relationship between sample moments and moments of MLE fitted distri-
butions. Note that the mean of the fitted logarithmic and negative binomial distributions match the
observed samplemean (as expected given that the samplemean is themaximum likelihood estimator
of the negative binomial and logarithmicmeans), but result in toomanymoderately large groups (3rd
quartile), too few very large groups (maximum), and an underestimation of the variance observed
in the data. Thus, although the fitted negative binomial and logarithmic distributions describe the
mean of the data well, they mischaracterize other aspects of the data distribution and underestimate
uncertainty about the mean. On the other end of the spectrum, the Yule and zeta distributions have
unrealistically heavy tails and overestimate the variance in the counts. For example, the average stan-
dard deviation of flock size for all species combined (as estimated from simulations) was 1.15E+09
for the zeta distribution as compared to 25.8 for the discretized lognormal and 23.6 for the nega-
tive binomial (and 91.1 in the observed data). Although the standard deviation of flock size is only
slightly higher with the discretized lognormal as compared to the logarithmic and negative binomial
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Positive Poisson (simulated) Positive Poisson (all species flock data)

Positive negative binomial (simulated) Positive negative binomial (all species flock data)

Positive geometric (all species flock data)Positive geometric (simulated)

Logarithmic (simulated) Logarithmic (all species flock data)

Discretized lognormal (all species flock data)Discretized lognormal (simulated)

Zeta (simulated) Zeta (all species flock data)

Yule (all species flock data)Yule (simulated)
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Fig. 2. Simulated (left column) and observed (right column) data for all species fitted using the seven distributions that we

compared. Note the variable x-axes for the simulated data.

distributions, the latter two distributions are more likely to underestimate maximum flock size (last
column, Table 3). The discretized lognormal distribution best matches the range of the observed data
(Fig. 2, Table 3) but it also consistently underestimates the mean flock size, in part because it pro-
duces too few very large counts. Thus, while the discretized lognormal captures the variance and the
upper tail probability of the data somewhat better than the other distributions (negative binomial
and logarithmic underestimate upper tail probability and variance; zeta and Yule overestimate up-
per tail probability and variance), this comes at a cost to efficient estimation of the mean (negative
bias of 20%–30% in our simulations). Given this result, Poissonmixture distributions may currently be
preferable for abundance estimation, assuming reasonable variance corrections can be incorporated.



Author's personal copy

76 E.F. Zipkin et al. / Statistical Methodology 17 (2014) 67–81

4. Discussion

We described a marked point process framework for modeling flock numbers and flock sizes
to characterize sea duck distribution and abundance in the Atlantic. We employed model selection
techniques to choose appropriate models for skewed and zero-inflated distributions of flock numbers
and highly right-skewed distributions of flock sizes. Our process-oriented approach should be useful
in modeling other highly aggregated, patchily distributed species. The distributions that best fit
the ‘‘points’’, i.e., the number of flocks per transect, (negative binomial and zero inflated negative
binomial) and ‘‘marks’’, i.e., the flock sizes, (discretized lognormal)were surprisingly consistent across
sea duck species and did not vary among years.

Our results have important implications for estimating annual abundances of wintering sea ducks
and for designing future surveys that will be able to generate information on population statuses and
trends. Inappropriate choice of the distribution family in a modeling framework can lead not only
to bias in parameter estimates, but to inaccurate assessments of uncertainty and statistical power.
Appropriate characterization of uncertainty and estimation of statistical power are of particular
importance in a management context because uncertainty will be propagated through decision-
making processes and will affect our understanding of population dynamics, as well as the design
and implementation of future monitoring programs. For example, national harvest regulations for
many species of ducks are set annually by the US Fish andWildlife Service using population estimates
derived from aerial surveys of breeding areas (e.g., [46,48]); these regulatory decisions are informed
by predictions from models of population dynamics that are also derived from survey estimates.
Because the sea ducks considered here breed in remote areas that are not covered by current surveys,
estimates from winter areas may provide our best means of monitoring responses to exploitation
and environmental change, but only if estimates from winter surveys can correctly and precisely
estimate abundance. Our results are also particularly relevant to applications that require proper
modeling of the extreme values of abundance observed for many species and where surveying
presents logistical challenges, thereby limiting the number of samples collected. This includes risk
and impact assessments, as well as detection of high-use areas. As marine environments along the
eastern United States are currently being considered for development of wind energy production [5],
sufficient survey methods and accurate maps are critically needed to assess the potential impacts of
the proposed development on sea ducks and seabirds.

The best-fitting distributions for flock size in our study (discretized lognormal, logarithmic,
negative binomial, Yule, and zeta) differ from each other primarily in the shape of the upper tail. The
probability mass of the zeta distribution declines log-linearly in the tail (that is, linearly on doubly
logarithmic axes), and the Yule distribution nearly so, making them the heaviest tailed distributions
in our candidate set. This is evident in the relatively common occurrence of very large counts in
these distributions (column one in Fig. 2, Table 3). The probability mass of the upper tail of the
discretized lognormal distribution declines in a log-quadratic fashion, whereas the logarithmic and
negative binomial display an exponential decay in the upper tail. Thus, the heaviness of tails in
these distributions is ranked as follows: zeta ≈ Yule > discretized lognormal > logarithmic ≈
negative binomial. That the discretized lognormal distribution was consistently selected for our three
sea duck species groups suggests that the upper tails of flock size distributions for these species
are not exponentially bounded (logarithmic and negative binomial), but not as extreme as would
be predicted under power law-type distributions (e.g., zeta, Yule). This is fortunate for abundance
estimation, because power law behavior implies that the variance (for a < 2) and mean (for a < 1)
are not finite; that is, that sample moments would increase with the area and time spent sampling
rather than providing estimates ofmeaningful characteristic properties of the abundance distribution.

The lognormal distribution has a long history in ecology (e.g., [38]) and a diversity of other
fields [27] where it often arises as a plausible alternative to other heavy-tailed distributions like
power laws (e.g., in birds; [1]). One classical generative process for a lognormal distribution is
the multiplicative stochastic growth process first proposed by Gibrat [16], in which the size of an
entity changes by successive multiplicative random effects; if the multiplicative random effects are
independent and lognormally distributed, then the size distribution will be lognormal. The lognormal
distribution arises even more generally as a direct consequence of the Central Limit Theorem for
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products of random variables; any process that involves the product of a sufficiently large number
of independent and identically distributed random variables having any distribution with finite mean
and variance has a limiting lognormal distribution. Thus, a discretized lognormal distribution of counts
could arise from a variety of plausible ecological mechanisms. However, the lognormal distribution
is known to produce biased estimates of the mean and variance when it is ‘‘contaminated’’ with even
small amounts of data from other distributions [32]. In our dataset of flock sizes, the discretized
lognormal underestimated the sample mean for all three species (Table 3), which suggests that our
data may not conform perfectly to a lognormal distribution. One possible reason for small deviations
from lognormality might be nonstationarity in the underlying process. It may be possible to control
for this problem by stratifying areas of high/low abundance or adding covariates that account for
changes in group sizes, such that the conditional distribution is closer to lognormal. The lack-of-fit of
the lognormal may also reflect the manner in which observers count birds in aerial surveys: singles
and pairs have a higher probability of being undetected [37], whereas flocks with more birds are
typically undercounted [35]. Further exploration of the counting process and the relationship of the
observed counts to actual sea duck flock sizes might help explain the disparity between the observed
and lognormal tails. The ultimate choice of which distribution is the most appropriate depends
on the modeling purpose. In our case, the discretized lognormal was identified as the best fitting
distribution overall, and therefore might be the best choice for simulation modeling that requires a
compact representation of the whole distribution. Yet, given the sensitivity of moment estimators
to slight deviations from the lognormal distribution [32], one might be justified in choosing a
statistical distributionwith a lower total log-likelihood that can providemore robustmean abundance
estimates, such as the logarithmic or negative binomial distributions. Simulation studies could help
to choose the optimal distribution for particular applications.

Bonabeau et al. [4] suggested that an exponentially decaying power law may be a useful distri-
bution for dealing with heavy-tailed data that is bounded. To determine the appropriateness of the
exponentially decaying zeta distribution compared to our top performing models, we additionally fit
this distribution to flock size data for the three species groups. While the exponentially decaying zeta
distribution had greater log-likelihood values (−5324.3 for Common eiders, −7854.3 for Long-tailed
ducks, and −12713.0 for scoters) than either the zeta or Yule (suggesting a comparatively better fit;
Table 2), it was still outperformed by the discretized lognormal (p < 0.001 in Vuong pair-wise com-
parison tests and lower AICc) for all three species groups, supporting the hypothesis that our data,
while skewed, are less heavy-tailed than distributions in the power law family. Although the expo-
nentially decaying power lawmaynot produce a better fit to our data than the discretized lognormal, it
may provide a useful alternative because of the abovementioned problems associatedwith estimating
the moments of lognormal distributions when the lognormal is not a perfect fit. By no means did we
present an exhaustive list of possible statistical distributions formodeling skewed count data.We sug-
gest further exploration of the exponentially decaying zeta distribution, as well as other distributions
as possible alternatives to the discretized lognormal, when abundance estimation is the objective.

It is important to note that selection among statistical distribution models that differ primarily
in their tails is notoriously difficult with small sample sizes and noisy data [2,10]. We have used
data from a very large survey, but many ecological datasets are substantially smaller and would not
allow discrimination among the more similar of the models studied here [32]. This suggests a useful
role for meta-analysis, synthetic analysis of large databases, and validation of mechanistic models
of processes determining group size distributions, so that recommendations for appropriate choices
of distributions can be made for selection of distributions on the basis of taxonomy, life history,
environment, etc. The similarity inmodel fits among species, species groups, and years is encouraging,
as it suggests that model power and estimator precision for individual species groups can be gained
by borrowing information both over time and across species [48].

Manymechanisticmodels of group size formation and aggregation have been proposed to give rise
to several of the distributions studied here. For example, Caraco [8], Niwa [33] and Ma et al. [29] have
each demonstrated howdiffering rules related to the decision onwhen to join or leave groups can lead
to negative binomial, decaying power law, and logarithmic distributions of group size, respectively.
However, in our sea duck example, flock detection and flock size counts are likely the result not
only of the biological processes associated with flocks coalescing, but also the specific fixed-width
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sampling protocol used during the surveys (i.e., the observation process). In this case, the negative
binomial distribution combined with the discretized lognormal produced the best fit to our marked
point process for observed number of flocks and flocks sizes, but it is possible that other sampling
approaches could yield different combinations. Counting large flocks on the oceanwithin a 200mstrip
while in a fast moving airplane is a difficult task, but one that can be improved through training and
revised protocols. Beauchamp [2] noted that rough conditions at sea could bias counts and possibly
alter which statistical distribution fits best to observed flock sizes. Further exploration of how to
minimize and account for the effects of the observationprocess, such as including covariates, detection
functions, and upper limits imposed by the size of the observation unit, may lead to more accurate
and precise counts and better estimates of uncertainty, allowing for improved understanding of the
biological mechanisms that produce variation in sea duck flock sizes.

Statistical models of ecological count data can be far more complex than those presented
here. It is common to include spatial, temporal, and habitat strata, environmental and biological
covariates influencing ecological processes leading to the presence or absence of a species, and
sampling covariates, which can affect the detection process of individuals during surveying. We
intentionally focused our study on simple distributional models for avian count data, neglecting
additional complexity that may in some cases improve model explanatory power. It is fundamental
to first determine what form of the underlying statistical distribution is appropriate before real world
complexities can be incorporated into models. Our marked point process approach matches the
observational process (e.g., seeing a flock, then determining its size) and readily allows for inclusion
of covariates for both flock detection and flock size estimation.

A parsimonious approach is recommended for a second reason: large scale monitoring programs
often do not have the capacity to collect, maintain, and utilize extensive ancillary data sets, and long-
term changes in distribution, abundance, or phenology may make models calibrated to fixed strata
(e.g., the study area; areas of high density) inappropriate or inefficient at large scales. Thus, simple
descriptions that generalize across species and years are extremely valuable, when possible. Our
results suggest that the sea duck counts based on our survey methodology have similar statistical
properties, and comparable models can be used over time and across species. These models will
form the basis for continued exploration aimed at identifying the covariates affecting wintering sea
duck populations, and providing decision makers with the best possible description of sea duck
distributional patterns and trends.
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Appendix A

Parameters and probability mass functions for the four distributions that we compare using the
data on the number of sea duck flocks per transect. In all cases, the support is x ∈ {0, 1, 2, 3, . . .}.
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Specifications of all distributions are as in the VGAM R package [50].

Distribution Parameters Probability mass function

P [X = 0] P [X = x]

Zero-inflated Poisson
0 ≤ ϕ ≤ 1

ϕ + (1 − ϕ) e−λ
(1 − ϕ)

λxe−λ

x!λ > 0

Zero-inflated geometric
0 ≤ ϕ ≤ 1

ϕ + (1 − ϕ) p (1 − ϕ) p (1 − p)x
0 < p ≤ 1

Zero-inflated negative
binomial

0 ≤ ϕ ≤ 1

ϕ + (1 − ϕ)

(
k

μ + k

)k

(1 − ϕ) dnbinom (x, μ, k)μ > 0

k > 0

Negative binomial
μ > 0

dnbinom =
(
x + k − 1

x

) (
μ

μ + k

)x (
k

μ + k

)k

k > 0

Appendix B

Parameters and probability mass functions for the seven distributions that we compare using the
sea duck flock size data. In all cases, the support is x ∈ {1, 2, 3, . . .}. Specifications of all distributions
are as in the VGAMR package [50] except for the discretized lognormalwhich is specified as in Clauset
et al. [10].

Distribution Parameters Probability mass function

Positive Poisson λ > 0

λx
x! e

−λ

1 − e−λ

Positive negative

binomial

μ > 0
(

Γ (x + k)
x!Γ (k)

) (
μ

μ + k

)x (
k

μ + k

)k

1 −
(

k
μ + k

)k

k > 0

Geometric 0 < p ≤ 1 p (1 − p)x−1

Logarithmic 0 < p < 1
−1

ln (1 − p)
px

x

Discretized

lognormal

−∞ < μ < ∞
exp

(
− (ln (x − 0.5) − μ)2

2σ 2

)
(x − 0.5)

√
2πσ 2

−
exp

(
− (ln (x + 0.5) − μ)2

2σ 2

)
(x + 0.5)

√
2πσ 2√

2

πσ 2
exp

(
− (ln (0.5) − μ)2

2σ 2

)
σ > 0

Zeta a > 0
1

xa+1

/∑∞
n=1

1

na+1

Yule a > 0
aΓ (x) Γ (a + 1)

Γ (x + a + 1)



Author's personal copy

80 E.F. Zipkin et al. / Statistical Methodology 17 (2014) 67–81

References

[1] A.P. Allen, B.L. Li, E.L. Charnov, Population fluctuations, power laws and mixtures of lognormal distributions, Ecol. Lett. 4
(2001) 1–3.

[2] G. Beauchamp, Fit of aggregation models to the distribution of group sizes in Northwest Atlantic seabirds, Mar. Ecol. Prog.
Ser. 425 (2011) 261–268.

[3] E. Bonabeau, L. Dagorn, Possible universality in the size distribution of fish schools, Phys. Rev. E 51 (1995) R5220–R5223.
[4] E. Bonabeau, L. Dagorn, P. Freon, Scaling in animal group-size distributions, Proc. Natl. Acad. Sci. 96 (1999) 4472–4477.
[5] C. Bowes, J. Allegro, The turning point for Atlantic offshore wind energy: time for action to create jobs, reduce pollution,

protect wildlife, and secure America’s energy future, Report produced by the National Wildlife Federation, 2012, p. 56.
[6] K.P. Burnham, D.R. Anderson, Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach,

second ed., Springer-Verlag, 2002.
[7] D.F. Caithamer, M. Otto, P.I. Padding, J.R. Sauer, G.H. Haas, Sea ducks in the Atlantic flyway: population status and a review

of the special hunting seasons. US Fish and Wildlife Service, Laurel, Maryland, USA, 2000, pp. 1–40.
[8] T. Caraco, Stochastic dynamics of avian foraging flocks, Am. Nat. 115 (1980) 262–275.
[9] G. Certain, E. Bellier, B. Planque, V. Bretagnolle, Characterising the temporal variability of the spatial distribution of

animals: an application to seabirds at sea, Ecography 30 (2007) 695–708.
[10] A. Clauset, C.R. Shalizi, M.E.J. Newman, Power-law distributions in empirical data, SIAM Rev. 51 (2009) 661–703.
[11] J.E. Cohen, Markov population processes asmodels of primate social and population dynamics, Theor. Popul. Biol. 3 (1972)

119–134.
[12] D.J. Daley, D. Vere-Jones, An Introduction to the Theory of Point Processes, vol. I, second ed., Springer, New York, 2003.
[13] A.L. Drewitt, R.H.W. Langston, Assessing the impacts of wind farms on birds, Ibis 148 (2006) 29–42.
[14] I. Fujisaki, E.V. Pearlstine, M. Miller, Detecting population decline of birds using long-term monitoring data, Popul. Ecol.

50 (2008) 275–284.
[15] S. Garthe, O. Huppop, Scaling possible adverse effects of marine wind farms on seabirds: developing and applying a

vulnerability index, J. Appl. Ecol. 41 (2004) 724–734.
[16] R. Gibrat, Les Inégalités Economiques, Recueil Sirey, Paris, 1931.
[17] M. Griesser, Q. Ma, S. Webber, K. Bowgen, D.J.T. Sumpter, Understanding animal group-size distributions, PLoS One 6

(2011) http://dx.doi.org/10.1371/journal.pone.0023438.
[18] M. Guillemette, J.H. Himmelman, C. Barette, Habitat selection by common eiders in winter and its interaction with flock

size, Can. J. Zool. 71 (1993) 1259–1266.
[19] D. Hall, Zero-inflated Poisson and binomial regressionwith random effects: a case study, Biometrics 56 (2000) 1030–1039.
[20] M. Jacobsen, Point Process Theory and Applications: Marked Point and Piecewise Deterministic Processes, Birkhäuser,

Boston, Massachusetts, 2006.
[21] R. Jovani, R. Mavor, D. Oro, Hidden patterns of colony size variation in seabirds: a logarithmic point of view, Oikos 117

(2008) 1774–1781.
[22] R. Jovani, D. Serrano, E. Ursua, J.L. Tella, Truncated power laws reveal a link between low-level behavioural processes and

grouping patterns in a colonial bird, PLoS One 3 (2008) http://dx.doi.org/10.1371/journal.pone.0001992.
[23] T.H. Keitt, H.E. Stanley, Dynamics of North American breeding bird populations, Nature 393 (1998) 257–260.
[24] M. Kirk, D. Esler, S.A. Iverson, Movements of wintering surf scoters: predator responses to different prey landscapes,

Oecologia 155 (2008) 859–867.
[25] J.K. Larsen, M. Guillemette, Effects of wind turbines on flight behaviour of wintering common eiders: implications for

habitat use and collision risk, J. Appl. Ecol. 44 (2007) 516–522.
[26] T.L. Lewis, D. Esler, W.S. Boyd, Foraging behavior of surf scoters and white-winged scoters in relation to clam density:

inferring food availability and habitat quality, The Auk 125 (2008) 149–157.
[27] E. Limpert, W.A. Stahel, M. Abbt, Log-normal distributions across the sciences: keys and clues, BioScience 51 (2001)

341–352.
[28] W.A. Link, J.R. Sauer, A hierarchical analysis of population changewith application to ceruleanwarblers, Ecology 83 (2007)

2832–2840.
[29] Q. Ma, A. Johansson, D.J.T. Sumpter, A first principles derivation of animal group size distributions, J. Theoret. Biol. 283

(2011) 35–43.
[30] T.G. Martin, B.A. Wintle, J.R. Rhodes, P.M. Kuhnert, S.A. Field, S.J. Low-Choy, A.J. Tyre, H.P. Possingham, Zero tolerance

ecology: improving ecological inference by modelling the source of zero observations, Ecol. Lett. 8 (2005) 1235–1246.
[31] M. Mitzenmacher, A brief history of generative models for power law and lognormal distributions, Internet Math. (2003)

226–251.
[32] R.A. Myers, P. Pepin, The robustness of lognormal-based estimators of Abundance, Biometrics 46 (1990) 1185–1192.
[33] H.S. Niwa, Power-law versus exponential distributions of animal group sizes, J. Theoret. Biol. 224 (2003) 451–457.
[34] A. Okubo, Dynamical aspects of animal grouping: Swarms, schools, flocks and herds, Adv. Biophys. 22 (1986) 1–94.
[35] A.T. Pearse, P.D. Gerard, S.J. Dinsmore, R.M. Kaminski, K.J. Reinecke, Estimation and correction of visibility bias in aerial

surveys of wintering ducks, J. Wildl. Manag. 72 (2008) 808–813.
[36] M.C. Perry, A.S. Deller, Waterfowl population trends in the Chesapeake Bay area, in: Hill, S. Nelson (Eds.), Proceedings

of the 1994 Chesapeake Research Conference; Toward a Sustainable Watershed: The Chesapeake Experiment, in: CRC
Publication, vol. 149, Chesapeake Research Consortium, Edgewater, MD, 1995, pp. 490–504.

[37] K.H. Pollock, W.L. Kendall, Visibility bias in aerial surveys: a review of estimation procedures, J. Wildl. Manag. 51 (1987)
502–510.

[38] F.W. Preston, The commonness and rarity of species, Ecology 29 (1948) 254–283.
[39] M.H. Quenouille, A relationship between the logarithmic, Poisson, and negative binomial series, Biometrics 5 (1949)

162–164.
[40] R Development Core R: a language and environment for statistical computing, R Foundation for Statistical Computing,

Vienna, Austria, 2011.



Author's personal copy

E.F. Zipkin et al. / Statistical Methodology 17 (2014) 67–81 81

[41] US Fish and Wildlife Service, Atlantic Coast Wintering Sea Duck Survey 2008–2011: Summary Report, US Department of
the Interior, Washington, DC, USA, 2012.

[42] Sea Duck Joint Venture, Species Status Report. 2003. http://www.seaduckjv.org/meetseaduck/species_status_summary.
pdf.

[43] E.D. Silverman, M. Kot, E. Thompson, Testing a simple stochastic model for the dynamics of waterfowl aggregation,
Oecologia 128 (2001) 608–617.

[44] N.J. Silvy (Ed.), The Wildlife Techniques Manual, seventh ed., The Johns Hopkins University Press, 2012.
[45] M. Sjoberg, B. Albrectsen, J. Hjalten, Truncated power law: a tool for understanding aggregation patterns in animals? Ecol.

Lett. 3 (2000) 90–94.
[46] US Fish andWildlife Service, Adaptive harvestmanagement: 2012 hunting season, USDepartment of Interior,Washington,

DC, 2012, p. 58. Available online at: http://www.fws.gov/migratorybirds/mgmt/AHM/AHM-intro.htm.
[47] Q.H. Vuong, Likelihood ratio tests for model selection and non-nested hypotheses, Econometrica 57 (1989) 307–333.
[48] B.K. Williams, J.D. Nichols, M.J. Conroy, Case study: management of the sport harvest of North American waterfowl,

in: Analysis and Management of Animal Populations, Academic Press, San Diego, 2002, p. 817.
[49] C.C. Wood, Aggregative response of common mergansers (Mergus merganser): predicting flock size and abundance on

Vancouver Island salmon streams, Can. J. Fish. Aquat. Sci. 42 (1985) 1259–1271.
[50] T.W. Yee, The VGAM package for categorical data analysis, J. Stat. Soft. 32 (2010) 1–34.
[51] A. Zeileis, C. Kleiber, S. Jackman, Regression models for count data in R, J. Stat. Soft. 27 (2008) 1–25.
[52] E.F. Zipkin, B. Gardner, A. Gilbert, A.F. O’Connell, J.A. Royle, E.D. Silverman, Distribution patterns of wintering sea ducks in

relation to the North Atlantic Oscillation and local environmental characteristics, Oecologia 163 (2010) 893–902.


